首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   628篇
  免费   136篇
  国内免费   136篇
测绘学   14篇
大气科学   155篇
地球物理   221篇
地质学   219篇
海洋学   114篇
天文学   4篇
综合类   44篇
自然地理   129篇
  2024年   1篇
  2023年   5篇
  2022年   13篇
  2021年   18篇
  2020年   24篇
  2019年   25篇
  2018年   25篇
  2017年   36篇
  2016年   26篇
  2015年   34篇
  2014年   54篇
  2013年   50篇
  2012年   54篇
  2011年   38篇
  2010年   44篇
  2009年   39篇
  2008年   39篇
  2007年   43篇
  2006年   50篇
  2005年   30篇
  2004年   34篇
  2003年   33篇
  2002年   32篇
  2001年   30篇
  2000年   22篇
  1999年   15篇
  1998年   13篇
  1997年   16篇
  1996年   8篇
  1995年   2篇
  1994年   11篇
  1993年   7篇
  1992年   8篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
排序方式: 共有900条查询结果,搜索用时 31 毫秒
41.
The annual and semi-annual variations of the ionosphere are investigated in the present paper by using the daytime F2 layer peak electron concentration (NmF2) observed at a global ionosonde network with 104 stations. The main features are outlined as follows. (1) The annual variations are most pronounced at magnetic latitudes of 40–60° in both hemispheres, and usually manifest as winter anomalies; Below magnetic latitude of 40° as well as in the tropical region they are much weaker and winter anomalies that are not obvious. (2) The semi-annual variations, which are usually peak in March or April in most regions, are generally weak in the near-pole regions and strong in the far-pole regions of both hemispheres. (3) Compared with their annual components, the semi-annual variations in the tropical region are more significant.In order to explain the above results, we particularly analyze the global atomic/molecular ratio of [O/N2] at the F2 layer peak height by the MSIS90 model. The results show that the annual variation of [O/N2] is closely related with that of NmF2 prevailing in mid-latitudes and [O/N2] annual variation usually may lead to the winter anomalies of NmF2 occurring in the near-pole region. Moreover, NmF2 semi-annual variations appearing in the tropical region also have a close relationship with the variation of [O/N2]. On the other hand, the semi-annual variations of NmF2 in the far-pole region cannot be simply explained by that of [O/N2], but the variation of the solar zenith angle may also have a significant contribution.  相似文献   
42.
天山山区近40a年降水变化特征与南、北疆的比较   总被引:24,自引:2,他引:24       下载免费PDF全文
袁玉江  何清  喻树龙 《气象科学》2004,24(2):220-226
本文分析了天山山区近40 a来年降水变化的基本特征,并与南疆、北疆进行了比较,所得的主要结果如下:(1)天山山区在年降水量干湿变化阶段上与北疆的相似性强于南疆。(2)年降水量的空间分布的同步变化性以北疆为最好,南疆最差,天山山区居中,而年降水量的空间分布的反向变化性,以天山山区为最大,北疆最小,南疆居中。(3)天山山区与南疆从60年代到90年代,年降水均表现出了持续的增加的趋势,北疆年降水从60年代到90年代,除70年代外,不断增多。  相似文献   
43.
Soil liquefaction and associated ground failures have been a major source of damage during the past earthquakes. The risk of liquefaction and associated ground deformation can be reduced by various ground-improvement methods including the stone column (gravel drain) technique. This paper presents the current state of the stone column technologies as a liquefaction countermeasure. A comprehensive review is provided aiming to: (a) identify key considerations for the general use of stone columns as a liquefaction countermeasure, (b) provide insights for design and construction, (c) compile the latest research developments, and (d) identify sources of useful information. Case histories of field applications and observed field performance are cited to portray different stone column applications and observed effectiveness. The paper identifies areas where more research is needed and includes recommendations for future research and development.  相似文献   
44.
interpretationofpaleoclimaticrecordsinicecore(Dansgaardetal.,1969;Rozanskietal.,1997;Yao,1999;Thompsonetal.,2000).SincethefirstdeepicecorewasdrilledinGreenlandin1966(Dansgaardetal.,1969),hundredsoficecoreswereobtainedsuccessivelyfromicesheetsinAntarcticaandArctic,andmountainglaciersatmid-highlatitudes,fundedbynumerousresearchprogramsonglobalclimateandenvironmentalchange.Theseicecoresprovideuniqueandvaluablefirst-handinformationinrecoveringglobalpaleoenvironmentalrecordsandforecastingfuturecl…  相似文献   
45.
Many Recent and fossil freshwater tufa stromatolites contain millimetre‐scale, alternating laminae of dense micrite and more porous or sparry crystalline calcites. These alternating laminae have been interpreted to represent seasonally controlled differences in the biotic activity of microbes, and/or seasonally controlled changes in the rate of calcification. Either way, couplets of these microbially mediated alternating calcified laminae are generally agreed to represent annual seasonality. Combined stable isotope (δ18O and δ13C) and trace element (Mg, Sr, Ba) geochemistry from Recent tufa stromatolites show that seasonal climatic information is available from these calcites. Variability in δ18O (and in one case Mg concentration) has been shown to be controlled primarily by stream temperature change, usually driven by solar insolation. In arid climates, seasonal evaporation can also cause δ18O enrichment by at least 1‰. Variability in δ13C results potentially from: (1) seasonal change in plant uptake of 12C‐enriched CO2; (2) seasonal change in degassing of 12C‐enriched CO2 in the aquifer system; and (3) precipitation of calcite along the aquifer or river flow path, a process that increases δ13C of dissolved inorganic carbon (DIC) in the remaining water. Mechanisms 2 and 3 are linked because calcite precipitates in aquifers where degassing occurs, e.g. air pockets. The latter mechanism for δ13C enrichment has also been shown to cause sympathetic variation between trace element/Ca ratios and δ13C because trace elements with partition coefficients much greater than 1 (e.g. Sr, Ba) remain preferentially in solution. Since degassing in air pockets will be enhanced during decreased recharge when water saturation of the aquifer is lowest, sympathetic variation in trace element/Ca ratios and δ13C is a possible index of recharge and therefore precipitation intensity. High‐resolution geochemical data from well‐dated tufa stromatolites have great potential for Quaternary palaeoclimate reconstructions, possibly allowing recovery of annual seasonal climatic information including water temperature variation and change in rainfall intensity. However, careful consideration of diagenetic effects, particularly aggrading neomorphism, needs to be the next step. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
46.
Some conceptual models suggest that baseflow in agriculturally fragmented watersheds may contain little, if any, groundwater. This has critical implications for stream quality and ecosystem functioning. Here, we (a) identify the sources and flowpaths contributing to baseflow using 222Rn and 87Sr/86Sr and (b) quantify mean apparent ages of groundwater and baseflow using multiple isotopic tracers (CFC, SF6, 36Cl, and 3H) in 4 small (0.08 to 0.64 km2) tributary catchments to the Wabash River in Indiana, USA. 222Rn activities and 87Sr/86Sr ratios indicate that baseflow in 3 catchments is sourced primarily from groundwater; baseflow in the fourth is dominated by a source similar to agricultural run‐off. CFC‐12 data indicate that springs in 1 catchment are discharging significant proportions of water that recharged between 1974 (42 ± 2 years) and 1961 (55 ± 2 years). Those same springs have 36Cl/Cl ratios between 1,381.08 ± 29.37 (×10?15) and 1,530.64 ± 27.65 (×10?15) indicating that a substantial proportion of the discharge likely recharged between 1975 (41 years) and 1950 (66 years). Groundwater samples collected from streambed mini‐piezometers in a separate catchment have CFC‐12 concentrations indicating that a large proportion of the recharge occurred between 1948 (68 ± 2 years) and 1950 (66 ± 2 years). Repeat sampling conducted in September 2015 after above‐average summer rainfall did not show significant decreases in mean apparent age. The relatively old ages observed in 3 of the catchments can be explained by geological complexities that are likely present in all 4 catchments, but overwhelmed by flow from the shallow phreatic aquifer in the fourth catchment.  相似文献   
47.
We compared the interannual variability of annual daily maximum and minimum extreme water levels in Lake Ontario and the St Lawrence River (Sorel station) from 1918 to 2010, using several statistical tests. The interannual variability of annual daily maximum extreme water levels in Lake Ontario is characterized by a positive long‐term trend showing two shifts in mean (1929–1930 and 1942–1943) and a single shift in variance (in 1958–1959). In contrast, for the St Lawrence River, this interannual variability is characterized by a negative long‐term trend with a single shift in mean, which occurred in 1955–1956. As for annual daily minimum extreme water levels, their interannual variability shows no significant long‐term change in trend. However, for Lake Ontario, the interannual variability of these water levels shows two shifts in mean, which are synchronous with those for maximum water levels, and a single shift in variance, which occurred in 1965–1966. These changes in trend and stationarity (mean and variance) are thought to be due to factors both climatic (the Great Drought of the 1930s) and human (digging of the Seaway and construction of several dams and locks during the 1950s). Despite this change in means and variance, the four series are clearly described by the generalized extreme value distribution. Finally, annual daily maximum and minimum extreme water levels in the St Lawrence and Lake Ontario are negatively correlated with Atlantic multidecadal oscillation over the period from 1918 to 2010. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
48.
赵希涛  魏乐军 《地球学报》2020,41(1):91-105
在上文阐明"五江一河"径流量的年际变化及各节点具体径流量要比"红旗河工程"构想少得多的基础上,本文依据前人资料和成果,进一步阐述这些河流的径流量,在年内分配的不均匀性与洪水特征,及其对跨流域调水量的制约作用。研究表明:"五江一河"在11月到翌年4月,径流量只占全年总径流量的12.09%~21.84%,月均只有2.01%~3.64%,为冬、春季枯水期。其径流量只比拟调水比例20%或21%的月均值1.67%或1.75%略多。如此之少的水量,只能维系流域内的生态、生产及生活用水,而不能跨流域调水。何况"红旗河"中、下游在冬季结冰期也难以进行调水。每年6月份到9月份的4个月,"五江一河"径流量占全年径流量的53.3%~88.3%,甚至8月份的月径流量可达全年总径流量的17.8%~29.6%,属于汛期。根据径流量的实际数据,一年当中可供调水时间段只有丰水与平水期的6个月或汛期的3~4个月,要比"红旗河工程"构想的全年调水的时间大大缩短。在可资跨流域调水的每年5—10月份的时间窗口中,如果按原构想的月均调水流量占年径流量的比例1.67%(按20%计)或1.75%(按21%计)进行调水,则"五江一河"的年调水总量仅为153.25×10^8m^3(按20%计)或161.50×10^8m^3(按21%计)。仅为原构想调水量600亿m^3的1/4,充其量不足27%。在丰水与平水期的6个月中实现年径流量20%或21%的年调水比例,就意味将月调水比例从占年径流量的1.67%或1.75%增加为3.33%或3.50%。这样,"五江一河"的年调水总量可达到306.50×10^8m^3或323.00×10^8 m^3。此调水方案,导致调水河道截面积或工程规模增加一倍,但调水量也只有原构想的大约一半或至多54%。如果将调水目标强行设定为600亿m^3,那么"五江一河"的调水比例将提高到占年径流量的27.1%(南水北调西线工程开展前),或除金沙江和雅砻江之外的其它调水河流的39.0%(南水北调西线工程完成后),"红旗河"的建设规模势必大大增加,这也意味着工程难度大大增加,意味着工程建设与运行成本大大增加,意味着洪水、地震与地质灾害的危险性大大增加。"五江一河"实际可调水量比"红旗河"构想严重减少,使人不禁会对"红旗河"工程立论的科学基础和科学依据提出质疑。  相似文献   
49.
Understanding flow pathways and mechanisms that generate streamflow is important to understanding agrochemical contamination in surface waters in agricultural watersheds. Two environmental tracers, δ18O and electrical conductivity (EC), were monitored in tile drainage (draining 12 ha) and stream water (draining nested catchments of 6‐5700 ha) from 2000 to 2008 in the semi‐arid agricultural Missouri Flat Creek (MFC) watershed, near Pullman Washington, USA. Tile drainage and streamflow generated in the watershed were found to have baseline δ18O value of ?14·7‰ (VSMOW) year round. Winter precipitation accounted for 67% of total annual precipitation and was found to dominate streamflow, tile drainage, and groundwater recharge. ‘Old’ and ‘new’ water partitioning in streamflow were not identifiable using δ18O, but seasonal shifts of nitrate‐corrected EC suggest that deep soil pathways primarily generated summer streamflow (mean EC 250 µS/cm) while shallow soil pathways dominated streamflow generation during winter (EC declining as low as 100 µS/cm). Using summer isotopic and EC excursions from tile drainage in larger catchment (4700‐5700 ha) stream waters, summer in‐stream evaporation fractions were estimated to be from 20% to 40%, with the greatest evaporation occurring from August to October. Seasonal watershed and environmental tracer dynamics in the MFC watershed appeared to be similar to those at larger watershed scales in the Palouse River basin. A 0·9‰ enrichment, in shallow groundwater drained to streams (tile drainage and soil seepage), of δ18O values from 2000 to 2008 may be evidence of altered precipitation conditions due to the Pacific Decadal Oscillation (PDO) in the Inland Northwest. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
50.
Indirect nitrous oxide (N2O) emissions produced by nitrogen (N) leaching into surface water and groundwater bodies are poorly understood in comparison to direct N2O emissions from soils. In this study, dissolved N2O concentrations were measured weekly in both lowland headwater streams and subsurface agricultural field drain discharges over a 2‐year period (2013–2015) in an intensive arable catchment, Norfolk, UK. All field drain and stream water samples were found to have dissolved N2O concentrations higher than the water–air equilibrium concentration, illustrating that all sites were acting as a net source of N2O emissions to the atmosphere. Soil texture was found to significantly influence field drain N2O dynamics, with mean concentrations from drains in clay loam soils (5.3 μg N L?1) being greater than drains in sandy loam soils (4.0 μg N L?1). Soil texture also impacted upon the relationships between field drain N2O concentrations and other water quality parameters (pH, flow rate, and nitrate (NO3) and nitrite (NO2) concentrations), highlighting possible differences in N2O production mechanisms in different soil types. Catchment antecedent moisture conditions influenced the storm event mobilisation of N2O in both field drains and streams, with the greatest concentration increases recorded during precipitation events preceded by prolonged wet conditions. N2O concentrations also varied seasonally, with the lowest mean concentrations typically occurring during the summer months (JJA). Nitrogen fertiliser application rates and different soil inversion regimes were found to have no effect on dissolved N2O concentrations, whereas higher N2O concentrations recorded in field drains under a winter cover crop compared to fallow fields revealed cover crops are an ineffective greenhouse gas emission mitigation strategy. Overall, this study highlights the complex interactions governing the dynamics of dissolved N2O concentrations in field drains and headwater streams in a lowland intensive agricultural catchment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号